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Abstract
Insulin resistance is one of the most important mechanisms of diabetes mellitus. Anti-oxidants had been proved 

to improve insulin resistance. However, the direct relation between anti-oxidants and glucose homeostasis is still 
elusive. Recently, we found that LycogenTM (extracts of Rhodobacter sphaeroides WL-APD911) has lycopene-like 
activity. Furthermore, LycogenTM showed more potent anti-oxidative effect and less cytotoxicity than lycopene. To 
evaluate the effect of LycogenTM on blood glucose levels, STZ-induced diabetic mice were randomly divided into four 
groups: (1) diabetes control group; (2) diabetes+LycogenTM 50 mg/kg; (3) diabetes+LycogenTM 100 mg/kg; and (4) 
diabetes+LycogenTM 200 mg/kg. After 7 days of treatment, the blood glucose level in the LycogenTM 200 mg/kg group 
was significantly lower than the disease control group (p<0.01). In the oral glucose tolerance test, the blood glucose 
level was significantly lower in the LycogenTM 200 mg/kg group than the disease control group (p<0.05). Our results 
confirmed that LycogenTM, a potent anti-oxidant, can significantly lower blood glucose levels in a diabetic mice model. 
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Introduction
Diabetes mellitus (DM) continues to be a major burden on society 

globally. The International Diabetes Federation has predicted that the 
global burden of diabetes will increase to 552 million by 2030. In spite of 
newer and effective treatment, glucose control remains relatively poor 
in a subset of subjects diagnosed and treated with diabetes. Therefore, 
extensive research is still being performed to develop potential anti-
diabetic agents [1]. Reduction of action of insulin to activate the 
glucose transport system in skeletal muscle (referred to as “insulin 
resistance”) is the most important mechanism of DM. Oxidative stress 
has been increasingly recognized as a common underlying mechanism 
of insulin resistance [2-6]. Recent studies support this connection 
that the direct exposure of mammalian skeletal muscle to an oxidant 
stress results in the stimulation of mitogen-activated protein kinase 
(MAPK) and that MAPK signaling is mechanistically associated with 
the diminished insulin-dependent stimulation of insulin signaling and 
glucose transport [7-10]. Thus, strategies to prevent and ameliorate 
oxidative stress have become important in the treatment of diabetes. 
However, the association between anti-oxidants and glycemic control 
was still elusive in previous observational studies [11-16].

Bacteria can produce some compounds in response to their 
environment. These compounds are widely used in pharmaceutical 
applications. Carotenoids, responsible for pigments in plants, deep 
green vegetables and yellow fruits, possess antioxidant properties. 
Carotenoids are also biosynthesized in photosynthetic bacteria such 
as Rhodobacter sphaeroides [17] with the function of photoprotection 
[18]. Recently, we extract a novel fractionate (Lycogen™) from 
transformant Rhodobacter sphaeroides WL-APD911 [19,20]. 
Lycogen™, which contained ζ-carotene, neurosporene, spheroidenone 
and methoxyneurosporene according to nuclear magnetic resonance 
spectroscopy analysis, has anti-oxidative activity. ζ-Carotene is the 
precursor of neurosporene, which is the precursor of lycopene. 
Furthermore, Lycogen™ showed more potent anti-oxidative effects 
and less cytotoxicity than lycopene in our study. Therefore, we aimed 
to study the effect of Lycogen™ on blood glucose levels. 

Materials and Methods
Lycogen™

Rhodobacter sphaeroides WL-APD911 (DSM 25056) was a new 
strain, isolated from mutants using chemical mutagenesis (Rhodobacter 
sphaeroides; Bioresource Collection and Research (BCRC), Hsinchu, 
Taiwan). The R. sphaeroides WL-APD911 was cultured in broth. 
After harvesting, the bacterial broth was centrifuged and washed 
with ethanol. The bacterial residue is extracted with acetone and then 
centrifuged by 7500 rpm for 5 min. The supernatant is filtered through 
filter paper and a 0.2 μm filter into a round-bottomed flask. The color 
of the final supernatant is dark red. Acetone is removed completely in 
an oven at 55°C. The extract of R. sphaeroides WL-APD911 was named 
Lycogen™. The Lycogen™ is available from Asia-Pacific Biotech 
Developing, Inc. (Kaohsiung, Taiwan).

DPPH radical-scavenging activity 

The free radical-scavenging activity was determined using the 
method described by Braca et al. [21]. Freshly prepared DPPH 
solution, lycopene and Lycogen™ extract at various concentrations 
(25 µM, 50 µM and 100 µM) were mixed and incubated at 37°C for 30 
min. The absorbance at 517 nm was determined, and the percentage of 
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(Sigma, USA), citric acid (Sigma, USA), 1-ml syringes (Terumo, the 
Philippines), a mouse insulin ELISA kit (cat. # 10-1247-01, Mercodia, 
Sweden), DPPH (Sigma, USA), and an MTT assay kit (Tosoh, Tokyo, 
Japan).

Results
Anti-oxidative activity and cytotoxicity assessment

In the DPPH test, Lycogen™ showed more potent anti-oxidative 
activity than Lycopene, especially at higher concentrations (Figure 1). 
The human fibroblast (Hs68) toxicity assessment of Lycogen™ showed 
no cytotoxic effects on human fibroblasts at concentrations below 5 
μM. In contrast to Lycogen™, 0.1 μM lycopene showed cell toxicity in 
human fibroblasts. More significant cell toxicity was found at higher 
concentrations of lycopene (Figure 2). 

Blood glucose and insulin levels

Diabetic mice were randomly divided into four groups, (1) 
diabetes control group; (2) diabetes+Lycogen™ 50 mg/kg; (3) 
diabetes+Lycogen™ 100 mg/kg; and (4) diabetes+Lycogen™ 200 mg/
kg. Lycogen was prepared with pumpkin seed oil once a day for 14 
consecutive days. The diabetes control group and blank control group, 
which was only administered pumpkin seed oil, was treated once a day 
for 14 consecutive days. After the end of the 14-day course, the oral 
glucose tolerance test (OGTT) was performed on the next day. The 
experimental design is shown in Table 1.

After injection with STZ, the blood glucose level was significantly 
increased (p<0.005) in STZ-induced diabetic mice (Figure 3). The 
success rate of diabetes induction was 92% (23/25). The serum insulin 
concentration of STZ-induced diabetic mice was significantly lower 
than the control group (P<0.01), which confirmed the successful 
induction of the diabetic model (Figure 4). Changes in the body weight 
of the mice during the treatment period are shown in Figure 5. The 
results showed that Lycogen™ treatment did not cause weight loss in 
any group of mice. The blood glucose level after 7 days of Lycogen™ 
treatment is shown in Figure 6. Treatment with Lycogen™ 200 mg/
kg significantly reduced the blood glucose concentration compared 
with the disease control group (P<0.01). No significant difference was 
found between Lycogen™ 50 mg/kg, 100 mg/kg and disease control 
groups. The oral glucose tolerance test was performed after 14 days 
of Lycogen™ administration (Figure 7). At 60 min after oral glucose 
loading, the blood glucose level in the Lycogen™ 200 mg/kg group 

inhibition activity was calculated as [(A0–A1)/A0] x100, where A0 is 
the absorbance of the control, and A1 is the absorbance of the extract/
standard. The inhibition curves were constructed, and IC50 values 
were obtained.

Cytotoxicity assessment

The effects of Lycogen™ on the cell viability of Hs68 cells (human 
fibroblast cells, purchased from Bioresource Collection and Research 
Center) were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium bromide (MTT) assay. For the MTT assay, various 
concentrations of Lycogen™ and lycopene were separately added to 
the medium (Dulbecco's Modified Eagle's Medium) 24 h before the cell 
viability assay. In brief, MTT solution was added to each well, and the 
plates were incubated at 37°C for 4 h. The formazan product was then 
dissolved in 100 µl DMSO at 37°C for 30 min, and the absorbance at 
570 nm was measured with a microplate reader. Cell cytotoxicity was 
determined and expressed as the percentage of viable cells of the total 
number of cells counted. The values are the means ± SD (n ≥ 3) for 
each treatment.

Experimental animals

Seven-week-old C57BL/6 male mice were obtained from a supply 
company (BioLASCO Co., Ltd., Taipei, Taiwan). The animals were 
housed in stainless steel cages at 25 ± 2°C with a relative humidity range 
of 40%-70% and an alternating 12-hour light-dark cycle, and they were 
fed standard laboratory chow and water. The experimental protocol 
was approved by the Laboratory Animal Care and Use Committee 
(IACUC) of the Development Center for Biotechnology.

Establishment of experimental diabetes model 

Diabetes was induced by the intraperitoneal injection of STZ (50 
mg/kg; Sigma, USA) in freshly prepared citrate buffer (0.1 M, pH 4.5) 
for four consecutive days. The blank control group was intraperitoneally 
injected with an equivalent amount of buffer. Diabetic mice were 
confirmed by measuring the 4 h fasting blood glucose levels from the 
tail vein at one week after injection with STZ. Animals with a blood 
glucose level above 250 mg/dl were considered to be diabetic and 
included in the experiment. The serum insulin level was also detected 
to verify the diagnosis of diabetes. 

Oral glucose tolerance test (OGTT)

After 4 h of fasting, the basal blood glucose level was measured in 
test mice. Lycogen™ was orally administered to each group, and 30 
min later, the mice were fed glucose (1.5 g/kg) orally. The blood glucose 
level was detected at 15, 30, 60, 90, and 120 min after feeding. 

Statistical analysis

The results were expressed as the mean+standard error (mean 
± SE.). A one-way ANOVA was used to test the difference between 
groups. If P<0.05, Dunnett’s multiple-range t-test was used to identify 
the difference between the diabetes group and control group. 

Materials and Instruments
The materials and instruments included 15 ml centrifuge tubes 

(Corning, USA), a centrifuge (ALC PK131R, Italy), a blood glucose 
meter (glucometer ACCU-CHEK advantage II, Roche Diagnostics, 
USA), blood glucose test paper (glucose test Comic books, strips 
ACCU-CHEK advantage II, Roche Diagnostics, USA), microcentrifuge 
tubes (SSI and USA), streptozotocin (Sigma, USA), sodium citrate 

Figure 1: DPPH antioxidant test: Lycogen compared with Lycopene. 
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Figure 2: Effects of lycopene and Lycogen on cell cytotoxicity in Hs68 cells 
(human fibroblast cells). Cells were treated with different concentrations of 
lycopene(A) or Lycogen (B) for 24 h. THF (tetrahydrofuran; 1%) served as 
solvent control for lycopene and Lycogen. Cell cytotoxicity was determined by 
MTT and expressed as a percentage of viable cells in the total number of cells 
counted. Values are means ± SD (n ≥ 3) for each treatment.

Figure 3: Blood glucose change after STZ injection in mice. The dashed line 
is the average blood glucose level of the blank control group. *** P <0.005 
compared with the blank control group.

Figure 4: Insulin levels in STZ-induced diabetes mice. ** P <0.01 compared 
with the blank control group.

Figure 5: The change of the body weight of the mice in each treatment group 
during the drug treatment.

Figure 6: Blood glucose changes in diabetic mice 7 days after treatment. 
Blood glucose change (%) is calculated as: (7th day glucose level / basal 
glucose level before treatment) x 100%. ** P <0.01 compared with disease 
control group.
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was significantly lower than the disease control group (p<0.05). The 
insulin level of mice was measured at the same time, and no significant 
difference was found between any groups (Figure 8).

Homeostatic model assessment (HOMA) is a method used for 
assessing insulin resistance (IR) using basal (fasting) glucose and 
insulin concentrations. The HOMA-IR (insulin resistance) index 
of each group was calculated and shown in Table 2. There was no 
significant difference in insulin resistance between disease groups (day 
0, p=0.142 and day 14, p=0.239). When Lycogen™ 50 and 200 mg/kg 
were added, there were significant differences in the insulin resistance 
index between day 0 and day 14. 

Discussion
Oxidative stress plays an important role in insulin resistance. 

Moreover, anti-oxidants may be a potential treatment of DM. 
Rhodobacter sphaeroides extract, Lycogen™ showed more potent 
anti-oxidative effects and less cytotoxicity than lycopene. Our data 
confirmed that Lycogen™ significantly lowered the blood glucose level 
in STZ-induced diabetic mice (Figures 6 and 7). 

In our study, there was no significant difference in blood insulin 
levels between the disease control group and Lycogen™ treatment 
groups (Figure 8). Thus, the possibility of Lycogen™ lowering the 
blood glucose level by increasing insulin release was excluded. In the 
OGTT, there was no significant difference in the basal glucose level 
(0 min) between the study groups (Figure 7). Combined with no 
significant body weight difference between the study groups, this result 
suggests that it is less likely that Lycogen™ lowered the blood glucose 
level through decreasing GI tract absorption. There was a significant 
difference in the insulin resistance index between day 0 and day 14 
in the Lycogen™ 50 and 200 mg/kg groups (Table 2). Our data was 
consistent with previous studies, reduced oxidative stress improved 
insulin resistance in animal models [2-6]. 

Lycopene, a carotenoid, has been shown to have more potent 
antioxidant properties than other carotenoids in vitro [22]. In a 
cross-sectional study, greater dietary lycopene intake was associated 
with reduced fasting plasma glucose concentrations [23]. Plasma 
concentrations of lycopene had been shown to have an inverse 
association with fasting blood glucose [11-15]. However, no significant 
glucose-lowering effect of lycopene was found in other observational 
study [16]. The association between lycopene and glycemic control was 
still elusive in these observational studies. 

Lycogen™ showed more potent anti-oxidative activity and less 
cytotoxicity than lycopene in this study (Figures 1 and 2). Our results 
showed that the blood glucose level was significantly lower in the high-
dose group (Lycogen™ 200 mg/kg). However, no significant difference 
was found in the glucose level between the lower dose group and control 
group (Figures 6 and 7). Glucose-lowering effect of Lycogen™ was 
significant in higher dose but not in lower dose. Lycogen™ improved 
glycemic control in dose-dependent manner was suspected. This dose-
dependent relation can explain the inconsistent findings in previous 
observational studies. In consideration of the dose-dependent effect, 
the more potent and less toxic Lycogen™ may be a potential candidate 
for the development of a new anti-diabetic agent. 

Our results confirmed that Lycogen™, a potent anti-oxidant, can 
significantly improve insulin resistance and lower blood glucose levels 
in a diabetic mice model. Further investigation is warranted to clarify 
its possibility of use in diabetic patients.

minute
Figure 7: OGTT results of each treatment group. * P <0.05 compared with the 
disease control group.

Figure 8: The blood insulin concentration 14 days after treatment.

Group Lycogen Dose Frequency Mice number
Blank+vehicle - once daily for 14 days 5

Disease+vehicle - once daily for 14 days 5
Disease+Lycogen-1 50 mg/kg once daily for 14 days 5
Disease+Lycogen-2 100 mg/kg once daily for 14 days 5
Disease+Lycogen-3 200 mg/kg once daily for 14 days 5

Table 1: Study design.

p=0.142,  p=0.239
HOMA-IR (insulin resistance) index= insulin（μU/mL×glucose（mmol/L）/22.5

Table 2: Insulin resistance index in day 0 and day 14 of Lycogen treatment. There 
was no significant difference between each disease group at day 0 (p=0.142) or 
day 14 (p=0.239). 

Treatment Insulin resistance index p value
Day 0 Day 14

Blank+Vehicle 3.9±1.8 2.8±0.8 0.115
Disease+Vehicle 7.8±1.0 7.7±1.1 0.814

Disease+Lycogen 50 mg/kg 8.0±2.7 6.1±1.8 0.021
Disease+Lycogen 100 mg/kg 7.9±1.1 7.0±1.2 0.389
Disease+Lycogen 200 mg/kg 10.2±1.8 5.9±1.4 0.003
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